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Exponential Band Tails in Random Systems
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We present a simple derivation of the exponential band tails universally observed in
three-dimensional disordered materials. The physical picture employed is that of Halperin
and Lax in which states are localized by long-wavelength potential fluctuations. When the
effect of the small-scale fluctuations of the potential are included as well, via the scaling ar-
guments of Thouless, there results an exponential dependence of the density of states on en-
ergy below an energy £,. The magnitudes and dependences of £, and the width of the tail

on disorder agree with the experiment.
PACS numbers: 72.80.Ng, 71.50.+1, 71.55.Jv

An exponential relationship between the absorp-
tion coefficients and the photon energy, known as
the Urbach rule, was first enunciated in 1953 for
the observed optical-absorption edge in AgBr.! In
many insulators and crystalline semiconductors?
similar tails have subsequently been observed in the
optical absorption. More recent experiments on
optical-absorption coefficients’ have yielded in-
direct experimental evidence for exponential tails in
the densities of states (DOS) of amorphous semi-
conductors through a demonstration of the internal
consistency of the assumption of constant dipole
matrix elements.> Stronger and more direct experi-
mental evidence for exponential tails in individual
bands in those materials derives from a range of
studies of trap densities.* Usually attributed to dis-
order, i.e., defects, impurities, and thermal disor-
der, the physical origin of this essentially universal
behavior is still not well understood despite exten-
sive experimental®? and theoretical studies®™!! in
recent years.

Various attempts!!=?! have been made to calcu-
late the low-energy tail of the density of states of a
disordered system within the physical picture of in-
dependent electrons without mutual interactions,
the electron-phonon interaction, or spin-flip scatter-
ing. In all these attempts it has been recognized
that the density of localized states is several orders
of magnitude smaller than the density of extended
states, implying that the former arise from special
atomic configurations. Consequently, one is forced
to abandon mean-field-like or coherent-potential-
approximation-like theories and even numerical
simulations to obtain the density of localized states.
They arise from potential fluctuations on
wavelength scales of at least several atomic dis-
tances due to a variation in the physical parameters
of the disordered system on the same scale. When
the potential varies slowly enough the fluctuations
in the energies of states mirror the fluctuations in
the potential energy. This approach has been dis-
cussed by Lifshitz!2 and by Bonch-Bruevich.!?

Kane!* and Eggarter and Cohen'® have combined
the fluctuations with the semiclassical Thomas-
Fermi method to calculate the DOS. Since the
potential-energy fluctuations are Gaussian, the tail
found by Kane and by Eggarter and Cohen is
Gaussian. By including the kinetic energy of locali-
zation omitted in the Fermi-Thomas procedure,
Halperin and Lax!'® obtained tails falling off less
rapidly than Gaussian. Feynman path integrals,!’
field-theoretic treatments, ' and integration in other
function spaces!® as well as variational calculations?
yield essentially the same results as those of Halpe-
rin and Lax. It is clearly established by any of the
above treatments?! that wells of size A in which the
minimum Kinetic energy of localization is propor-
tional to X4/\? gives a DOS N (E) which behaves as
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where N, is the preexponential, X, =dw%?%/2m, L
is the correlation length of the potential fluctuations
and is of atomic size, d is the space dimensionality,
and W? is the variance of the random potential.
|E| is measured from the bottom of the conduction
band. The energy dependence in Eq. (1) can be un-
derstood as follows: The factor |E|? comes from
the amplitude of the potential fluctuation which be-
comes Gaussian on the length scale A >> L, and
the factor |E|~%/? comes from the spatial extent of
the potential fluctuations A, which scales as
|E|~9/2 when one assumes that the kinetic energy
|E| of confinement of the wave function for any
dimension goes like 1/A2.

The above treatments, which give the exact one-
dimenisonal (1D) asymptotic behavior for the
DOS,!6 give an | E|Y2 dependence in the logarithm
of the DOS for 3D in disagreement with the linear
dependence seen experimentally. Another puzzling
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feature is the hierarchy of magnitudes of the
characteristic energies: For example, from the
broadening of the main peak in the absorption coef-
ficient in passing from the crystalline® to the amor-
phous® (a) form of silicon, one estimates W to be
of order electronvolts. The quantity £, — E; can be
estimated* to be of order tenths of electronvolts in
a-Si, E, being the mobility edge and E; being the
energy below which the exponential behavior oc-
curs. E,, the slope of the exponential tail,>* is of
order hundredths of electronvolts in a-Si.

Thus, a major problem exists. A well established
theory gives results in contradiction to experiment
in three dimensions but exact in one dimension.
One can attribute this difficulty either to the omis-
sion of interactions or to an inadequacy in the
Halperin and Lax analysis in the absence of interac-
tions. In this Letter, we take the latter approach
and identify a crucial omission in the previous treat-
ments of the DOS calculation and show that, when
corrected, the Halperin and Lax class of theories
leads to an exp(— |E|/E,) dependence in the DOS
for 3D, while still giving the exact result'® in 1D.
The correct hierarchy of magnitudes for W, E. — E|,
and E is also obtained. The effects of interactions
remain to be assessed.

The discrepancy between theory and experiment
for the DOS in the 3D cases derives from the as-
sumption that the energy needed to localize a wave
function to a potential well of size A goes as 1/A? in
a disordered system. This assumption ignores the
short-wavelength fluctuations of the random poten-
tial, i.e., it ignores the effects of disorder on the en-
ergy of localization. To obtain the energy change
AFE due to constraining an extended state of energy
E’ into a volume of linear dimensions A in the pres-
ence of disorder, we observe that AE equals (within
a numerical factor) the shift of the energy due to
changing the boundary conditions from periodic to
antiperiodic. Thouless?? 23 has shown that this shift
can be expressed in terms of the density of states
per unit volume N (E£’') and the dimensionless con-
ductance g (\,E'). Thus we obtain for the energy
of localization AF in a three-dimensional material

AE =Bg(\E')/\N(E"), (2)
with d =3, where B is a constant. For lengths

much higher than interatomic distances we can use
the Vollhardt and Wolfle?* expression

A
1+3 §(E)]

in three dimensions, where ¢ is the correlation
length which characterizes the spatial extent of the

g\ E) = —17
™

amplitude fluctuations of extended states of energy
E' above the mobility edge. As FE increases above
E., these amplitude fluctuations become less severe
and finally disappear near an energy E, at which ¢
has reached &,.2° At E,, AE =X;/A% for A >> &,
because of the uniformity of the wave function.
Comparing this with (2) gives 272X3¢,N (E,) for B.
For E.<E' < E,, it is possible that ¢{(; << £, when
g\)— 1/m% and AE =2x3¢0/w\*  [N(E,)
=N (E’')]. This value of AE is much smaller than
X3/A\* because it costs much less energy to
compress a highly fluctuating eigenfunction than a
uniform one.

It is easy to show from the Lloyd and Best varia-
tional?® principle that the optimal choice of E' is
E'=E_ so that A\ << ¢ for any A\, which enables us
to use AE=2X3§0/7r>\3. By repeating any of the
previous calculations of the Lax and Halperin type
for finding the DOS in the tail with this new expres-
sion for AE we get

_L6x3¢0

N(E) ~
(E) ~exp|— 3oL

|E|] (3)

in 3D, where |E| is measured from the mobility
edge E,.. The inverse slope E of the exponential is
given by?®

s 311' WZL 3/16X3§0. (4)

Clearly Eq is only a small fraction of W. The varia-
tional principle of Lloyd and Best? gives

M= x2x:¢0/7|E|, (5)

for the optimal value of .

For the argument leading to Eq. (3) to hold, the
potential well, of extent A and of depth |E|+AE,
must be isolated. Isolation is guaranteed in 3D if
the probability that such a potential fluctuation will
occur is less than 102, Thus the smallest value of
|E| for which this condition can be satisfied,
E.— E\, satisfies

~(E,~ E,+AE)
I P(V)dV =10"7% (6)

where P (V) is the probability distribution of the
average potential in a region of volume A®. It has
zero mean and a variance W2(L/)\)3. From Eq. (6)
we have E,— E{= (0.6 to 0.8) W (L/\)¥? so that
from Eq. (5) we obtain

7 W2L*

(Ee—E) = (1210 23) 5 ™
Note that E, — E is of order 10~ W, while E, from
Eq. (4) is of order 1072 of W. The ratio
|E\|/Ey=3.2-6.2 is in agreement with experi-
ment.?
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It must be noted, however, that Eq. (3) does not
hold arbitrarily deep into the tail. Equation (5)
predicts that A decreases continuously into the tail.
Ultimately A would become smaller than the corre-
lation length L of the potential or the length 7
below which A =2 scaling of AE sets in.2® If L and »
were both larger than interatomic distances with
m > L, there would be a transition to Halperin-Lax
behavior followed by a transition to a Gaussian.
With L > 7, there is only a transition to a Gauss-
ian. If L and » are of atomic size, as is to be ex-
pected, the behavior in the deep tail depends on the
particular system.

Our arguments for the exponential behavior of
the DOS are very general and can be applied to any
type of disordered system whether the disorder is of
structural, compositional, or thermal origin.?’” The
actual values of £ and E; we obtain for a-Si are in
agreement with experiment,>* but the true signifi-
cance of the above results is their essentially
universal applicability. However, as the previous
theories gave the exact result in 1D and failed in
3D, we must confirm that our method of calcula-
tion does not fail in 1D while yielding the correct
result in 3D. In 1D the conductance is given by
(eMIE) _1)~1 where I(E') is the localization
length. Insertion into (2) gives AE ~ \~2 only if
A << I(E'). Use of the variation principle shows
that the optimal choice of E' is at the position of
the band edge in the absence of disorder, where
N (E’) peaks as long as W is sufficiently smaller
than the bandwidth. Further use of the variational
principle with AE ~ X\~ 2 gives A~ |E|~Y2. Thus,
the condition A << /(|E’|) becomes a condition on
|E,| which is more stringent than the condition that
the potential fluctuate be isolated. If the former
condition is satisfied, the correct asymptotic
behavior, N(E)~exp(—|E/E\*?), |E|< (E,
— E,) is obtained by other methods in 1D, with E
given by Eq. (1) and

E .~ E=3m'W 8)
on the assumption that A//(E;) = 0.1.

The above results for the power y of magnitude
|E| in the exponential can be generalized to con-
tinuous dimension:

y=1ford=2andy=2—d/2ford <2.

In sum, we find that one feature of the physical
picture of band-tail states embodied in the
Halperin-Lax theory remains essentially correct.
That is, below an energy £, localized states have a
physical extent governed by the size of the potential
fluctuation localizing them. The fact that Halperin
and Lax and their successors obtained the wrong
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energy dependence of the density of states in 2+ €
dimensions derived from their use of the incorrect
scaling between energy of localization and size of
the localized state. The Halperin and Lax argu-
ments do not apply in any way to localized states
with energies £, > E > F;. In that energy range,
the long-wavelength potential fluctuations merge,
and the physical extent of the localized states is
determined by the localization length, which
diverges at E.. Arguments analogous to those
above can also be used to estimate the energy E, at
which ¢ decreases to &, and fluctuations in the ex-
tended states lose their importance. Just as the at-
tractive potential fluctuations can bind a state of
sufficiently low energy, they can also lead to reso-
nances in the extended states. Moreover,
repulsive-potential fluctuations lead to an exclusion
of the extended state. The amplitude fluctuations
thus disappear when the energy is high enough for
there to be only isolated positive potential fluctua-
tions. Thus E, — E, is given by an expression like
the right-hand side of (7) and, for a-Si, for exam-
ple, is of order tenths of electronvolts.
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